
 1

Connectivity & Glitch Verification Acceleration for VLSI Designs
Using Static Methodology

By Arun Selvaraju & Abhishek Ghate, HCLTech

Case Study Overview

HCLTech discusses their robust methodology for early checking of connection integrity at the RTL and netlist
level for both the block and the top-level.

HCL used this methodology to successfully verify connectivity and glitches on an active SoC design using
Real Intent's SafeConnect in a few days, in contrast to several weeks work required with alternative
methods.

I. Efficient Connectivity Checking Needed for Structured Designs

Design teams are managing increasing SoC complexity through chip architectures that structurally connect
various functional components.

HCLTech thoroughly verifies these interconnected blocks and sought to improve the efficiency of our
methodology for verifying the connections between the pre-verified components, especially given that the
number of connections can reach millions.

 Connectivity Checking Glitch checking

Robust connectivity rules can identify and remedy issues early, for example:

- Eliminating block abutment issues that can show up during physical design
- Identifying specific instance port clock domains
- Detecting driven pins within a module
- Ensuring glitch-free input pins for specified instances.

Defining these connectivity rules requires checking signal connectivity across multiple blocks and hierarchical
levels and covering items such as the existence of the connection and its passage through specific modules.
The paths may include state elements, flops, clock gating, power logic, and other components.

 2

Later in this case study, we will discuss in depth several rules HCL defined at both the block and top levels
for one of our complex SoCs, which had six interconnected subsystems. We analyzed the results for each of
the defined rules using the generated report files and the integrated debug GUI.

II. Formal, Simulation, & STA Limitations for Connectivity & Glitch
Checking

For this application, formal, simulation, and script-based connectivity checking options present challenges
with scalability, debugging, and efficiency, and can lead to problems being identified late in the design flow.

Connectivity & glitch checking setup & runtime information can be found in Section V.

II-1. Formal verification limitations

HCL had previously done its connectivity checking and glitch detection exclusively using formal
technology. Formal methods use abstract mathematical models, logic, and formal languages to analyze
the behavior of systems.

This abstraction level can raise challenges in debugging and resolving issues within the design, and
computational complexities can lead to longer analysis times and potential scalability issues.

The accuracy of formal analysis is highly dependent on accurate and complete design specifications --
formal analysis may produce incorrect results or miss important connectivity issues if the specifications
are incomplete or are ambiguous.

Developing the complex specifications needed for formal analysis is time-consuming, and constraints
errors can also lead to inaccurate or incomplete analysis results.

 3

Finally, utilizing formal methods for connectivity checking requires expertise in formal verification
techniques and familiarity with the specific tools; this can require a learning curve and the need for
specialized training

II-2. Simulation limitations

Using simulation to verify connectivity also poses challenges such as limited coverage. This is because
simulations utilize manually created test benches and tests which might not cover all possible scenarios
and corner cases.

Further, developing and running comprehensive tests is both time-consuming and engineering time
intensive.

II-3. Static timing analysis limitations

False paths are timing paths in a design that are explicitly declared to not require timing analysis; the
paths are deemed non-critical or additional design considerations justify excluding them from timing
checks.

Because static timing analysis (STA) tools do not analyze false paths during the timing analysis process,
the STA tools will not detect any glitches or timing violations that may occur on them.

Additionally, script-based connectivity checking options have capacity/speed limits. and may not identify
connectivity issues until late in the design flow, where it is more expensive to remedy them. Further, the
scripts require ongoing maintenance.

III. HCL’s Basis for Deploying Real Intent SafeConnect for Connectivity &
Glitch Checking

HCL deployed a static sign-off methodology for our connectivity and glitch checking to overcome the
limitations described in section II above.

HCL adopted Real Intent SafeConnect to achieve our early RTL and gate-level netlist sign-off for both IP
blocks and SoCs, due to the following tool advantages that we found:

III-1. Fast, efficient rule definition & different rules at subsequent design stages

The rule definition process is easy and convenient – no testbenches or assertions are required. We can
develop our own rules for our company, a specific project, or an individual.

Connectivity checking must be performed at every stage of the design flow, with register transfer language
(RTL) design completeness increasing with each stage.

Slightly different rules may be needed to analyze each version; SafeConnect lets us define our checks easily,
identifying which RTL version the tool should analyze. Further, its flexible command options reduce noise in
reporting, and help us avoid waivers.

 4

III-2. High Capacity & Performance

SafeConnect reads our RTL design, constraints, power intent (UPF), performs analysis, and generates
comprehensive violations report based on HCL’s specific rules.

SafeConnect’s connectivity and glitch checking is significantly faster, with higher capacity compared with
methods using formal, simulation or using TCL-based scripts. We have benchmark details for this below in
section V.

III-3. Customized Connectivity Debug

Real Intent’s integrated iDebug feature enables us to view schematics of the targeted problematic
connections, along with their locations in the RTL. This makes HCL’s debug process easier, and we can more
efficiently iterate through the design flow to quickly achieve successful sign-off.

III-4. Low Setup & Maintenance

This static methodology requires minimal support and eliminates the need for ongoing maintenance efforts.
For example, we were not required to create assertions or build test benches during setup, unlike
traditional formal and simulation methods. Instead, we efficiently defined and configured design rules. Also,
no complex TCL scripts were required to manually implement the checks and there was no need to
continually maintain them.

IV. Proposed Static Sign-Off Methodology

The steps for our methodology were as follows:

1 - Define sources & destinations to specify paths

The source or destination can be a single signal or collection of signals, such as pin, port, and nets.
SafeConnect has multiple grouping commands for us to select specific module/instance pins, flip-flops in the
full chip, specific modules, and instances with switches for exclusion to reduce noise and group only the
required signal set.

2 - Define connectivity & glitch checks

There can be multiple scenarios for connectivity
testing and glitch detection. Examples are:
 -Connection present has combinational logic

-Connection passes through specified modules

-The connections are present in the same
power domain

-The connection is driven or not

-The specified path has potential glitches

-The glitch reaches the specified signal group

 5

Each defined rule is associated with a user-defined name. This makes it simple to identify which rule was
violated. The tool also has an option to selectively enable or disable rules during the analysis, providing
flexibility in focusing on specific rules.

We first defined and signed off the rules for each subsystem. Next, we defined rules at the top level to
check connectivity and identify any potential glitches arising from the interconnection of these
subsystems.

V: Results: Reduced Setup & Runtimes

The SoC design used for this methodology study includes an ARM-based CPU sub-system and artificial
intelligence (AI) IP instantiation to support AI capabilities. The SoC also has a GIC interrupt controller, a
debug subsystem, a watchdog timer, a peripheral subsystem that offers connectivity to external devices, a
RAM/ROM subsystem to manage memory operations, and DMA controllers to facilitate intra-system data
transfers, and more.

Setting up SafeConnect and defining our connectivity rules took us less than 8 hours -- we had the flow up
and running the same day. We used some of the rules for other sub-systems, which helped reduce our
setup time for them.

This is in contrast with methodologies deploying formal or simulation which require technical expertise --
setting up those environments takes more than a week of effort and the effort increases with complexity of
the block being tested.

The chart above shows that SafeConnect’s runtime was only a few minutes, which was a significant
improvement compared to the hours taken with HCL’s formal verification flow for the same purpose.

VI: Results: Bugs Found & Reports

We successfully verified the connectivity and addressed glitches in the design with this static sign-off
methodology.

Below are examples of what the tool reported for selected rules that we defined, including bugs found.

 6

HCL RULE 1

The specified signal group must drive design logic.

Report: All the signals in the group that did not
drive any logic were reported, along with their
location, under the FAIL header

HCL RULE 2

No glitch should reach the input pins of any
instance in the design.

Report: All input pins for which the drivers
converged to cause a glitch in the design were
reported, along with the instance name.

HCL RULE 3

Connectivity from source to destination must be in
the same power domain.

Report: All paths containing isolation cells or level
shifters were filtered out. All path where the
source and destination were in different domains
were reported.

HCL RULE 4

The reset at the System-on-Chip (SoC) top
must not be connected, either directly or
indirectly through combinational logic, to the
input pins of the subsystems.

Each valid path must have a reset
synchronizer on the path. We defined this
check at both the top and block level.

Report: This connective error was identified
and highlighted during the RTL level
connectivity static sign-off process.

 7

VII. Conclusion: Initial Deployment & Additional Insights

Our results clearly showed that our methodology to efficiently verify connectivity and glitch checks in the
design using a static sign-off approach, significantly reduces analysis time, taking only minutes for block-
level analysis compared to hours required by formal, simulation and TCL- based scripting methods for similar
blocks.

Further, it delivered low noise reports through user-configurable options and pattern matching, while being
adaptable to various design types, including design with complex control logic, clock gating, and power logic.

We also found additional advantages from using this static verification approach. First, we can now define
connectivity checks for third party IP input/output, rather than sharing RTL code, improving our third-party
IP sign-off process.

Second, during early design flow stages, in spite of not having a complete RTL, we were able to specify
connectivity originating from the module with missing definitions. This allowed us to verify pin functionality
and provide information to the physical design and verification team to address potential issues much
earlier.

